Deep learning vs. machine learning: Understand the differences
Both machine learning and deep learning discover patterns in data, but they involve dramatically different techniques

Source | www-infoworld-com.cdn.ampproject.org | Martin Heller
Machine learning and deep learning are both forms of artificial intelligence. You can also say, correctly, that deep learning is a specific kind of machine learning. Both machine learning and deep learning start with training and test data and a model and go through an optimization process to find the weights that make the model best fit the data. Both can handle numeric (regression) and non-numeric (classification) problems, although there are several application areas, such as object recognition and language translation, where deep learning models tend to produce better fits than machine learning models.
Machine learning explained
Machine learning algorithms are often divided into supervised (the training data are tagged with the answers) and unsupervised (any labels that may exist are not shown to the training algorithm). Supervised machine learning problems are further divided into classification (predicting non-numeric answers, such as the probability of a missed mortgage payment) and regression (predicting numeric answers, such as the number of widgets that will sell next month in your Manhattan store).